Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Cardiovasc Res ; 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38630620

RESUMO

Mast cells are tissue-resident immune cells strategically located in different compartments of the normal human heart (the myocardium, pericardium, aortic valve and close to nerves) as well as in atherosclerotic plaques. Cardiac mast cells produce a broad spectrum of vasoactive and proinflammatory mediators, which have potential roles in inflammation, angiogenesis, lymphangiogenesis, tissue remodeling and fibrosis. Mast cells release preformed mediators (e.g., histamine, tryptase, chymase) and de novo synthesized mediators [e.g., cysteinyl leukotriene C4 (LTC4) and prostaglandin D2 (PGD2)], as well as cytokines and chemokines, which can activate different resident immune cells (e.g., macrophages) and structural cells (e.g., fibroblasts, endothelial cells) in the human heart and aorta. The transcriptional profiles of various mast cell populations highlight their potential heterogeneity and distinct gene and proteome expression. Mast cell plasticity and/or heterogeneity enable these cells the potential for performing different, even opposite, functions in response to changing tissue contexts. Human cardiac mast cells display significant differences compared to mast cells isolated from other organs. These characteristics make cardiac mast cells intriguing, given their dichotomous potential roles of inducing or protecting against cardiovascular diseases. Identification of cardiac mast cell subpopulations represents a prerequisite for understanding their potential multifaceted roles in health and disease. Several new drugs specifically targeting human mast cell activation are under development or in clinical trials. Mast cells and/or their subpopulations can potentially represent novel therapeutic targets for cardiovascular disorders.

2.
Int J Mol Sci ; 25(7)2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38612858

RESUMO

Thymic stromal lymphopoietin (TSLP), mainly expressed by epithelial cells, plays a central role in asthma. In humans, TSLP exists in two variants: the long form TSLP (lfTSLP) and a shorter TSLP isoform (sfTSLP). Macrophages (HLMs) and mast cells (HLMCs) are in close proximity in the human lung and play key roles in asthma. We evaluated the early proteolytic effects of tryptase and chymase released by HLMCs on TSLP by mass spectrometry. We also investigated whether TSLP and its fragments generated by these enzymes induce angiogenic factor release from HLMs. Mass spectrometry (MS) allowed the identification of TSLP cleavage sites caused by tryptase and chymase. Recombinant human TSLP treated with recombinant tryptase showed the production of 1-97 and 98-132 fragments. Recombinant chymase treatment of TSLP generated two peptides, 1-36 and 37-132. lfTSLP induced the release of VEGF-A, the most potent angiogenic factor, from HLMs. By contrast, the four TSLP fragments generated by tryptase and chymase failed to activate HLMs. Long-term TSLP incubation with furin generated two peptides devoid of activating property on HLMs. These results unveil an intricate interplay between mast cell-derived proteases and TSLP. These findings have potential relevance in understanding novel aspects of asthma pathobiology.


Assuntos
Asma , Linfopoietina do Estroma do Timo , Humanos , Triptases , Quimases , Indutores da Angiogênese , Serina Proteases , Citocinas
3.
Eur J Intern Med ; 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38402021

RESUMO

BACKGROUND: Macrophages are the predominant immune cells in the human lung and play a central role in airway inflammation, including asthma and chronic obstructive pulmonary disease (COPD). Thymic stromal lymphopoietin (TSLP), a pleiotropic cytokine mainly expressed by bronchial epithelial cells, plays a key role in asthma and COPD pathobiology. TSLP exists in two variants: the long form (lfTSLP) and a shorter TSLP isoform (sfTSLP). We aimed to localize TSLP in human lung macrophages (HLMs) and investigate the mechanisms of its release from these cells. We also evaluated the effects of the two variants of TSLP on the release of angiogenic factor from HLMs. METHODS: We employed immunofluorescence and Western blot to localize intracellular TSLP in HLMs purified from human lung parenchyma. HLMs were activated by T2-high (IL-4, IL-13) and T2-low (lipopolysaccharide: LPS) immunological stimuli. RESULTS: TSLP was detected in HLMs and subcellularly localized in the cytoplasm. IL-4 and LPS induced TSLP release from HLMs. Preincubation of macrophages with brefeldin A, known to disrupt the Golgi apparatus, inhibited TSLP release induced by LPS and IL-4. lfTSLP concentration-dependently induced the release of vascular endothelial growth factor-A (VEGF-A), the most potent angiogenic factor, from HLMs. sfTSLP neither activated nor interfered with the activating property of lfTSLP on macrophages. CONCLUSIONS: Our results highlight a novel immunologic circuit between HLMs and TSLP. Given the central role of macrophages in airway inflammation, this autocrine loop holds potential translational relevance in understanding innovative aspects of the pathobiology of asthma and chronic inflammatory lung disorders.

4.
Artigo em Inglês | MEDLINE | ID: mdl-38205820

RESUMO

PURPOSE OF REVIEW: Chronic rhinosinusitis (CRS) is a chronic inflammatory disorder of the sinonasal cavities classified into two major phenotypes: CRS with nasal polyps (CRSwNP) and without nasal polyps (CRSsNP). The diagnosis of CRS is based on clinical symptoms associated with imaging and/or nasal endoscopy findings of mucosal inflammation. RECENT FINDINGS: Recently, novel biological therapies have emerged as therapeutic options for CRSwNP. Imaging is helpful in deciding whether surgery is likely to be beneficial and in guiding surgery. It can also help demonstrate a clinical response to medical therapy. However, specific guidelines concerning the role of imaging in CRwNP are lacking. SUMMARY: This article provides a comprehensive and critical multidisciplinary review of the role of conventional radiology, computed tomography (CT), and magnetic resonance imaging (MRI) in the diagnosis and characterization of CRSwNP. Since the complete characterization of nasal polyps on CT or MR images is very challenging, we provide a critical review of the best imaging methods and essential reporting elements used to assess nasal polyps.

6.
Front Immunol ; 14: 1257398, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37841257

RESUMO

Introduction: Common variable immunodeficiency (CVID) is the most prevalent symptomatic primary immunodeficiency. CVID is a heterogeneous disorder with a presumed multifactorial etiology. Intravenous or subcutaneous immunoglobulin replacement therapy (IgRT) can prevent severe infections but not underlying immune dysregulation. Methods: In this study, we evaluated the serum concentrations of proinflammatory (TNF-α, IL-1ß, IL-6) and immunoregulatory cytokines (IL-10), as well as lipopolysaccharide (LPS) and soluble CD14 (sCD14) in CVID individuals with infectious only (INF-CVID), and those with additional systemic autoimmune and inflammatory disorders (NIC-CVID), and healthy donors (HD). Results: Our results showed increased serum concentrations of TNF-α, IL-1ß, IL-6, and IL-10 in both INF-CVID and NIC-CVID subjects compared to HD. However, elevations of TNF-α, IL-1ß, IL-6, and IL-10 were significantly more marked in NIC-CVID than INF-CVID. Additionally, LPS concentrations were increased only in NIC-CVID but not in INF-CVID compared to HD. Circulating levels of sCD14 were significantly increased in NIC-CVID compared to both INF-CVID and HD. Discussion: These findings indicate persistent cytokine dysregulation despite IgRT in individuals with CVID. Moreover, the circulating cytokine profile reveals the heterogeneity of immune dysregulation in different subgroups of CVID subjects.


Assuntos
Imunodeficiência de Variável Comum , Citocinas , Humanos , Interleucina-10 , Interleucina-6 , Fator de Necrose Tumoral alfa , Lipopolissacarídeos , Receptores de Lipopolissacarídeos , Imunoglobulinas
7.
Front Immunol ; 14: 1167404, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37705974

RESUMO

Background: Polymorphonuclear neutrophils (PMNs) are the main effector cells in inflammatory responses and play multiple roles in thyroid cancer (TC). PMNs contain and release a plethora of mediators, including granular enzymes [e.g., myeloperoxidase (MPO), pentraxin-3 (PTX3) and matrix metalloproteinase-9 (MMP-9)], and neutrophil extracellular traps (NETs). The aim of this study was to evaluate NETs and neutrophil-derived mediators as possible biomarkers in TC patients. Methods: 20 patients with differentiated thyroid cancer (DTC), 26 patients with dedifferentiated thyroid cancer (De-DTC), 26 patients with multinodular goiter (MNG) and 22 healthy controls (HCs) were recruited. Serum concentrations of free DNA (dsDNA), nucleosomes, citrullinated histone H3 (CitH3) and MPO-DNA complexes were evaluated as NET biomarkers. Neutrophil-related mediators such as MPO, PTX3, MMP-9, CXCL8, and granulocyte-monocyte colony-stimulating factor (GM-CSF) were measured by ELISA. Results: Serum levels of all four NET biomarkers were increased in DeDTC patients compared to HCs. CitH3 serum levels were selectively increased in both DeDTC and DTC patients compared to HCs and MNG patients. MPO-DNA complexes and nucleosomes were selectively increased only in DeDTC patients compared to HCs and MNG patients. Moreover, MPO-DNA complexes were selectively increased in DeDTC patients compared to DTC patients also. MPO circulating levels were selectively increased in the DeDTC patient subgroup compared to HCs. Circulating levels of PTX3, MMP-9 and GM-CSF were increased in DTC and DeDTC patients compared to HCs. Nucleosomes positively correlated with dsDNA, CitH3, MPO and CXCL8. MPO-DNA complexes positively correlated with dsDNA, CitH3, CXCL8, MPO and nucleosome levels. Moreover, three out of the four NET biomarkers (i.e., dsDNA, nucleosomes and MPO-DNA complexes) were increased in elderly patients compared to young patients and in patients with metastatic disease at diagnosis compared to non metastatic patients. Nucleosomes were higher in males compared to females. Conclusion: MPO-DNA complexes, nucleosomes and, to some extent, CitH3 levels seem to correlate with malignancy and severity of progressive TC. Moreover, serum concentrations of PMN-related mediators (MPO, PTX3, GM-CSF) were increased in TCs compared to MNG and HCs.


Assuntos
Adenocarcinoma , Armadilhas Extracelulares , Neoplasias da Glândula Tireoide , Idoso , Feminino , Masculino , Humanos , Neutrófilos , Metaloproteinase 9 da Matriz , Nucleossomos , Fator Estimulador de Colônias de Granulócitos e Macrófagos , Histonas
8.
Cytokine ; 169: 156298, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37454543

RESUMO

N-formyl peptide receptors (FPRs) are seven-transmembrane, G protein-coupled receptors with a wide distribution in immune and non-immune cells, recognizing N-formyl peptides from bacterial and mitochondrial origin and several endogenous signals. Three FPRs have been identified in humans: FPR1, FPR2, and FPR3. Most FPR ligands can activate a pro-inflammatory response, while a limited group of FPR agonists can elicit anti-inflammatory and homeostatic responses. Annexin A1 (AnxA1), a glucocorticoid-induced protein, its N-terminal peptide Ac2-26, and lipoxin A4 (LXA4), a lipoxygenase-derived eicosanoid mediator, exert significant immunomodulatory effects by interacting with FPR2 and/or FPR1. The ability of FPRs to recognize both ligands with pro-inflammatory or inflammation-resolving properties places them in a crucial position in the balance between activation against harmful events and maintaince of tissue integrity. A new field of investigation focused on the role of FPRs in the setting of heart injury. FPRs are expressed on cardiac macrophages, which are the predominant immune cells in the myocardium and play a key role in heart diseases. Several endogenous (AnxA1, LXA4) and synthetic compounds (compound 43, BMS-986235) reduced infarct size and promoted the resolution of inflammation via the activation of FPR2 on cardiac macrophages. Further studies should evaluate FPR2 role in other cardiovascular disorders.


Assuntos
Doenças Cardiovasculares , Humanos , Doenças Cardiovasculares/tratamento farmacológico , Receptores de Formil Peptídeo/agonistas , Receptores de Formil Peptídeo/metabolismo , Ligantes , Peptídeos/química , Inflamação/metabolismo
9.
Eur J Intern Med ; 117: 111-118, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37500310

RESUMO

Mastocytosis is a heterogeneous disease associated to uncontrolled proliferation and increased density of mast cells in different organs. This clonal disorder is related to gain-of-function pathogenic variants of the c-kit gene that encodes for KIT (CD117) expressed on mast cell membrane. Thymic stromal lymphopoietin (TSLP) is a pleiotropic cytokine, which plays a key role in allergic disorders and several cancers. TSLP is a survival and activating factor for human mast cells through the engagement of the TSLP receptor. Activated human mast cells release several preformed mediators, including tryptase. Increased mast cell-derived tryptase is a diagnostic biomarker of mastocytosis. In this study, we found that in these patients serum concentrations of TSLP were lower than healthy donors. There was an inverse correlation between TSLP and tryptase concentrations in mastocytosis. Incubation of human recombinant TSLP with sera from patients with mastocytosis, containing increasing concentrations of tryptase, concentration-dependently decreased TSLP immunoreactivity. Similarly, recombinant ß-tryptase reduced the immunoreactivity of recombinant TSLP, inducing the formation of a cleavage product of approximately 10 kDa. Collectively, these results indicate that TSLP is a substrate for human mast cell tryptase and highlight a novel loop involving these mediators in mastocytosis.


Assuntos
Mastocitose , Linfopoietina do Estroma do Timo , Humanos , Triptases/metabolismo , Citocinas/metabolismo , Mastocitose/metabolismo , Mastócitos/metabolismo
10.
Front Immunol ; 14: 1190034, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37205111

RESUMO

Basophils bind IgE via FcεRI-αßγ2, which they uniquely share only with mast cells. In doing so, they can rapidly release mediators that are hallmark of allergic disease. This fundamental similarity, along with some morphological features shared by the two cell types, has long brought into question the biological significance that basophils mediate beyond that of mast cells. Unlike mast cells, which mature and reside in tissues, basophils are released into circulation from the bone marrow (constituting 1% of leukocytes), only to infiltrate tissues under specific inflammatory conditions. Evidence is emerging that basophils mediate non-redundant roles in allergic disease and, unsuspectingly, are implicated in a variety of other pathologies [e.g., myocardial infarction, autoimmunity, chronic obstructive pulmonary disease, fibrosis, cancer, etc.]. Recent findings strengthen the notion that these cells mediate protection from parasitic infections, whereas related studies implicate basophils promoting wound healing. Central to these functions is the substantial evidence that human and mouse basophils are increasingly implicated as important sources of IL-4 and IL-13. Nonetheless, much remains unclear regarding the role of basophils in pathology vs. homeostasis. In this review, we discuss the dichotomous (protective and/or harmful) roles of basophils in a wide spectrum of non-allergic disorders.


Assuntos
Hipersensibilidade , Doenças Parasitárias , Animais , Camundongos , Humanos , Basófilos , Receptores de IgE/metabolismo , Mastócitos , Doenças Parasitárias/metabolismo
12.
Clin Exp Med ; 23(6): 1981-1998, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36737487

RESUMO

Common variable immunodeficiency (CVID) is a primary immunodeficiency characterized by low levels of serum immunoglobulins and increased susceptibility to infections, autoimmune disorders and cancer. CVID embraces a plethora of heterogeneous manifestations linked to complex immune dysregulation. While CVID is thought to be due to genetic defects, the exact cause of this immune disorder is unknown in the large majority of cases. Compelling evidences support a linkage between the gut microbiome and the CVID pathogenesis, therefore a potential for microbiome-based treatments to be a therapeutic pathway for this disorder. Here we discuss the potential of treating CVID patients by developing a gut microbiome-based personalized approach, including diet, prebiotics, probiotics, postbiotics and fecal microbiota transplantation. We also highlight the need for a better understanding of microbiota-host interactions in CVID patients to prime the development of improved preventive strategies and specific therapeutic targets.


Assuntos
Doenças Autoimunes , Imunodeficiência de Variável Comum , Microbioma Gastrointestinal , Microbiota , Humanos , Imunodeficiência de Variável Comum/terapia , Imunodeficiência de Variável Comum/etiologia
13.
Int J Mol Sci ; 24(3)2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36769357

RESUMO

COVID-19 is a viral disease caused by SARS-CoV-2. This disease is characterized primarily, but not exclusively, by respiratory tract inflammation. SARS-CoV-2 infection relies on the binding of spike protein to ACE2 on the host cells. The virus uses the protease TMPRSS2 as an entry activator. Human lung macrophages (HLMs) are the most abundant immune cells in the lung and fulfill a variety of specialized functions mediated by the production of cytokines and chemokines. The aim of this project was to investigate the effects of spike protein on HLM activation and the expression of ACE2 and TMPRSS2 in HLMs. Spike protein induced CXCL8, IL-6, TNF-α, and IL-1ß release from HLMs; promoted efficient phagocytosis; and induced dysfunction of intracellular Ca2+ concentration by increasing lysosomal Ca2+ content in HLMs. Microscopy experiments revealed that HLM tracking was affected by spike protein activation. Finally, HLMs constitutively expressed mRNAs for ACE2 and TMPRSS2. In conclusion, during SARS-CoV-2 infection, macrophages seem to play a key role in lung injury, resulting in immunological dysfunction and respiratory disease.


Assuntos
COVID-19 , Humanos , COVID-19/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo , SARS-CoV-2/metabolismo , Enzima de Conversão de Angiotensina 2/metabolismo , Pulmão/metabolismo , Macrófagos/metabolismo
14.
Clin Exp Med ; 23(3): 929-941, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35467314

RESUMO

Immunoglobulin A (Chan in J Allergy Clin Immunol 134:1394-14014e4, 2014), the second most abundant immunoglobulin in serum, plays an important role in mucosal homeostasis. In human serum, there are two subclasses of IgA, IgA1 (≅ 90%) and IgA2 (≅ 10%), transcribed from two distinct heavy chain constant regions. This study evaluated the serum concentrations of total IgA, IgA1, and IgA2, and total IgG, IgG1, IgG2, IgG3, and IgG4 in T2-high asthmatics compared to healthy controls and the presence of gender-related variations of immunoglobulins. Total IgA levels were increased in asthmatics compared to controls. Even more marked was the increase in total IgA in male asthmatics compared to healthy male donors. IgA1 were increased only in male, but not in female asthmatics, compared to controls. Concentrations of IgG2, but not IgG1, IgG3, and IgG4, were reduced in asthmatics compared to controls. IgG4 levels were reduced in female compared to male asthmatics. In female asthmatics, IgA and IgA1 levels were increased in postmenopause compared to premenopause. IgA concentrations were augmented in mild, but not severe asthmatics. A positive correlation was found between IgA levels and the age of patients and an inverse correlation between serum concentrations of IgA2 and IgE in asthmatics. A positive correlation between total IgA or IgA2 and IgG2 was found in asthmatics. These results highlight a gender dimorphism in IgA subclasses in male and female T2-high asthmatics. More adequate consideration of immunological gender disparity in asthma may open new opportunities in personalized medicine by optimizing diagnosis and targeted therapy.


Assuntos
Asma , Caracteres Sexuais , Humanos , Masculino , Feminino , Imunoglobulina A , Imunoglobulina G , Mucosa
15.
Clin Exp Med ; 23(4): 1265-1276, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35879625

RESUMO

Mast cells are multifunctional immune cells with complex roles in tissue homeostasis and disease. Cardiac mast cells (HCMCs) are strategically located within the human myocardium, in atherosclerotic plaques, in proximity to nerves, and in the aortic valve. HCMCs express the high-affinity receptor (FcεRI) for IgE and can be activated by anti-IgE and anti-FcεRI. Autoantibodies to IgE and/or FcεRI have been found in the serum of patients with a variety of immune disorders. We have compared the effects of different preparations of IgG anti-IgE obtained from patients with atopic dermatitis (AD) with rabbit IgG anti-IgE on the release of preformed (histamine and tryptase) and lipid mediators [prostaglandin D2 (PGD2) and cysteinyl leukotriene C4 (LTC4)] from HCMCs. Functional human IgG anti-IgE from one out of six AD donors and rabbit IgG anti-IgE induced the release of preformed (histamine, tryptase) and de novo synthesized mediators (PGD2 and LTC4) from HCMCs. Human IgG anti-IgE was more potent than rabbit IgG anti-IgE in inducing proinflammatory mediators from HCMCs. Human monoclonal IgE was a competitive antagonist of both human and rabbit IgG anti-IgE. Although functional anti-IgE autoantibodies rarely occur in patients with AD, when present, they can powerfully activate the release of proinflammatory and vasoactive mediators from HCMCs.


Assuntos
Histamina , Mastócitos , Animais , Coelhos , Humanos , Triptases , Autoanticorpos , Liberação de Histamina , Imunossupressores , Imunoglobulina G
16.
Nutrients ; 16(1)2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38201921

RESUMO

Food allergy (FA) is a growing public health concern, with an increasing prevalence in Western countries. Increasing evidence suggests that the balance of human gut microbiota and the integrity of our intestinal barrier may play roles in the development of FA. Environmental factors, including industrialization and consumption of highly processed food, can contribute to altering the gut microbiota and the intestinal barrier, increasing the susceptibility to allergic sensitization. Compositional and functional alterations to the gut microbiome have also been associated with FA. In addition, increased permeability of the gut barrier allows the translocation of allergenic molecules, triggering Th2 immune responses. Preclinical and clinical studies have highlighted the potential of probiotics, prebiotics, and postbiotics in the prevention and treatment of FA through enhancing gut barrier function and promoting the restoration of healthy gut microbiota. Finally, fecal microbiota transplantation (FMT) is now being explored as a promising therapeutic strategy to prevent FA in both experimental and clinical studies. In this review article, we aim to explore the complex interplay between intestinal permeability and gut microbiota in the development of FA, as well as depict potential therapeutic strategies.


Assuntos
Hipersensibilidade Alimentar , Microbioma Gastrointestinal , Humanos , Hipersensibilidade Alimentar/prevenção & controle , Transplante de Microbiota Fecal , Nível de Saúde , 60435
17.
Front Immunol ; 13: 1056838, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36578500

RESUMO

Human basophils, first identified over 140 years ago, account for just 0.5-1% of circulating leukocytes. While this scarcity long hampered basophil studies, innovations during the past 30 years, beginning with their isolation and more recently in the development of mouse models, have markedly advanced our understanding of these cells. Although dissimilarities between human and mouse basophils persist, the overall findings highlight the growing importance of these cells in health and disease. Indeed, studies continue to support basophils as key participants in IgE-mediated reactions, where they infiltrate inflammatory lesions, release pro-inflammatory mediators (histamine, leukotriene C4: LTC4) and regulatory cytokines (IL-4, IL-13) central to the pathogenesis of allergic diseases. Studies now report basophils infiltrating various human cancers where they play diverse roles, either promoting or hampering tumorigenesis. Likewise, this activity bears remarkable similarity to the mounting evidence that basophils facilitate wound healing. In fact, both activities appear linked to the capacity of basophils to secrete IL-4/IL-13, with these cytokines polarizing macrophages toward the M2 phenotype. Basophils also secrete several angiogenic factors (vascular endothelial growth factor: VEGF-A, amphiregulin) consistent with these activities. In this review, we feature these newfound properties with the goal of unraveling the increasing importance of basophils in these diverse pathobiological processes.


Assuntos
Hipersensibilidade , Neoplasias , Animais , Camundongos , Humanos , Basófilos , Interleucina-13 , Interleucina-4 , Interleucina-3 , Liberação de Histamina , Citocinas
18.
Cells ; 11(21)2022 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-36359917

RESUMO

Asthma is a chronic inflammatory disease characterized by variable airflow limitation and airway hyperresponsiveness. A plethora of immune and structural cells are involved in asthma pathogenesis. The roles of neutrophils and their mediators in different asthma phenotypes are largely unknown. Neutrophil extracellular traps (NETs) are net-like structures composed of DNA scaffolds, histones and granular proteins released by activated neutrophils. NETs were originally described as a process to entrap and kill a variety of microorganisms. NET formation can be achieved through a cell-death process, termed NETosis, or in association with the release of DNA from viable neutrophils. NETs can also promote the resolution of inflammation by degrading cytokines and chemokines. NETs have been implicated in the pathogenesis of various non-infectious conditions, including autoimmunity, cancer and even allergic disorders. Putative surrogate NET biomarkers (e.g., double-strand DNA (dsDNA), myeloperoxidase-DNA (MPO-DNA), and citrullinated histone H3 (CitH3)) have been found in different sites/fluids of patients with asthma. Targeting NETs has been proposed as a therapeutic strategy in several diseases. However, different NETs and NET components may have alternate, even opposite, consequences on inflammation. Here we review recent findings emphasizing the pathogenic and therapeutic potential of NETs in asthma.


Assuntos
Asma , Armadilhas Extracelulares , Humanos , Neutrófilos/metabolismo , Asma/patologia , Inflamação/patologia , Histonas/metabolismo , Biomarcadores/metabolismo , DNA/metabolismo
19.
Int J Mol Sci ; 23(22)2022 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-36430941

RESUMO

Mast cells are strategically located in different compartments of the lung in asthmatic patients. These cells are widely recognized as central effectors and immunomodulators in different asthma phenotypes. Mast cell mediators activate a wide spectrum of cells of the innate and adaptive immune system during airway inflammation. Moreover, these cells modulate the activities of several structural cells (i.e., fibroblasts, airway smooth muscle cells, bronchial epithelial and goblet cells, and endothelial cells) in the human lung. These findings indicate that lung mast cells and their mediators significantly contribute to the immune induction of airway remodeling in severe asthma. Therapies targeting mast cell mediators and/or their receptors, including monoclonal antibodies targeting IgE, IL-4/IL-13, IL-5/IL-5Rα, IL-4Rα, TSLP, and IL-33, have been found safe and effective in the treatment of different phenotypes of asthma. Moreover, agonists of inhibitory receptors expressed by human mast cells (Siglec-8, Siglec-6) are under investigation for asthma treatment. Increasing evidence suggests that different approaches to depleting mast cells show promising results in severe asthma treatment. Novel treatments targeting mast cells can presumably change the course of the disease and induce drug-free remission in bronchial asthma. Here, we provide an overview of current and promising treatments for asthma that directly or indirectly target lung mast cells.


Assuntos
Asma , Mastócitos , Humanos , Células Endoteliais , Asma/tratamento farmacológico , Pulmão , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico
20.
Eur J Intern Med ; 106: 111-119, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36280524

RESUMO

BACKGROUND: Heart failure (HF) is a growing public health burden, with high prevalence and mortality rates. A proportion of patients with HF have a normal ventricular ejection fraction (EF), referred to as HF with preserved EF (HFpEF), as opposed to patients with HF with reduced ejection fraction (HFrEF). HFpEF currently accounts for about 50% of all HF patients, and its prevalence is rising. Angiopoietins (ANGPTs), vascular endothelial growth factors (VEGFs) and secretory phospholipases A2 (sPLA2s) are proinflammatory mediators and key regulators of endothelial cells. METHODS: The aim of this study was to analyze the plasma concentrations of angiogenic (ANGPT1, ANGPT2, VEGF-A) and lymphangiogenic (VEGF-C, VEGF-D) factors and the plasma activity of sPLA2 in patients with HFpEF and HFrEF compared to healthy controls. RESULTS: The concentration of ANGPT1 was reduced in HFrEF compared to HFpEF patients and healthy controls. ANGPT2 levels were increased in both HFrEF and HFpEF subjects compared to controls. The ANGPT2/ANGPT1 ratio was increased in HFrEF patients compared to controls. The concentrations of both VEGF-A and VEGF-C did not differ among the three groups examined. VEGF-D was increased in both HFrEF and HFpEF patients compared to controls. Plasma activity of sPLA2 was increased in HFrEF but not in HFpEF patients compared to controls. CONCLUSIONS: Our results indicate that three different classes of proinflammatory regulators of vascular permeability and smoldering inflammation are selectively altered in HFrEF or HFpEF patients. Studies involving larger cohorts of these patients will be necessary to demonstrate the clinical implications of our findings.


Assuntos
Insuficiência Cardíaca , Fosfolipases A2 Secretórias , Humanos , Volume Sistólico , Fator A de Crescimento do Endotélio Vascular , Fator D de Crescimento do Endotélio Vascular , Fator C de Crescimento do Endotélio Vascular , Angiopoietinas , Células Endoteliais , Prognóstico , Fosfolipases
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...